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Abstract 

A growing number of companies started commercialising low-cost sensors (LCS) that are 

said to be able to monitor air pollution in outdoor air. One benefit of the use of LCS is the 

increased spatial coverage when monitoring air quality in cities and remote locations.  

Today, there are hundreds of LCSs commercially available on the market with a cost 

ranging from a few hundred to a few thousand euro. At the same time, the scientific 

literature currently reports independent information about the performance of sensor 

systems against reference measurements for about 110 sensor systems. In fact, the data 

quality of low-cost sensors is often questionable. It is affected by atmospheric conditions, 

pollutant concentration levels and therefore by the site location where the measurements 

are carried out. 

This report presents the collected results of quantitative studies of the performance of 

low-cost sensors against reference measurements. The information collected was an 

attempt to assess the following issues: 

 Agreement between sensor and reference measurements; 

 Availability of raw data, transparency of data treatment and possibility of a-

posteriori calibration; 

 Capability to measure multiple pollutants; 

 Affordability of sensor systems taking into consideration the number of provided 

sensors. 

This information gathered in this report comes from research institutes having a LCS 

testing programme in place, e.g. the California Board - Air Quality Sensor Performance 

Evaluation Center (AQ-SPEC), the European Union Joint Research Centre (EU JRC) and 

the United States Environmental Protection Agency (US EPA). Other information was 

drawn from peer-reviewed journals that tested different types of sensors in research 

studies. Finally, this information has been linked with scripts able to perform a statistical 

analysis in the form of an electronic report. This work represents an important review to 

classify commercial sensors based on their agreement with reference systems.  

There are only a few available commercial sensor systems that are consistent with all 

issues mentioned above that show a good agreement with reference measurements 

(coefficient of determination, R², higher than 0.75 and slope of regression line within 

1±0.5) and total price lower than 3 k€. The conclusion from this market analysis is that 

the only sensor system satisfying the requirements of multipollutant, availability of raw 

data, transparency of all applied data treatment, availability of evaluation of the 

performance of sensor system in literature with high coefficient of determination (>0.85) 

has been found to be the AirSensEUR v.2. 
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1. Introduction 

The widening of the commercial availability of micro-sensors technology is contributing to 

the rapid adoption of low-cost sensors for air quality monitoring by both citizen science 

initiatives and public authorities45.In general, public authorities want to increase the 

density of monitoring measurements and often want to rely on low-cost sensors because 

they cannot afford sufficient reference Air Quality Monitoring Stations (AQMS)27.Low-cost 

sensors can provide real time measurements at lower cost allowing higher spatial 

coverage than the current reference methods for air pollutants measurements. 

Additionally, the monitoring of air pollution with reference measurement methods 

requires skilled operators for the maintenance and calibration of measuring devices that 

are described in detailed Standard Operational Procedures14–18. Conversely, it is expected 

that low-cost sensors can be operated without human intervention, making it possible for 

unskilled users to monitor air pollution without the need of additional technical 

knowledge. Plenty of institutes in charge of air quality monitoring for regulatory 

purposes, as well as local authorities, are considering including low-cost sensors among 

their routine methods of measurements to supplement monitoring with reference 

measurements. However, the lack of exhaustive and accessible information in order to 

compare the performance of low-cost sensors and the wide commercial offers make it 

difficult to select the most appropriate low-cost sensors for monitoring purposes. For 

classification and understanding of sensor deployment, one should distinguish between 

the sole sensor detector produced by Original Equipment Manufacturer (hereafter such 

sensors are called OEM, or OEM sensors) and sensor systems (SSys), which include OEM 

sensors together with a protective box, sampling system, power system, electronic 

hardware, and software for data acquisition, analogue to digital conversion, data 

treatment and data transfer49.Hereafter, OEM and SSys are referred to as low-cost 

sensors (LCS). From a user point of view, SSys are ready to use out of the box systems, 

while OEM users need to add hardware/software components for protection from 

meteorological conditions, data storage, data pushing, interoperability of data and 

generally the calibration of LCSs. The use of LCSs is of major interest for citizen-science 

initiatives. Therefore, Small and Medium Enterprises make SSys available which can be 

deployed by citizens who want to monitor the air quality in a chosen environment. 

Although a number of reviews of the suitability of LCS for ambient air quality have been 

published1,12,38,45,63,85,86,91, quantitative data for comparing and evaluating the agreement 

between LCS and reference data are mostly missing from the existing reviews. 

Additionally, there is no commonly accepted protocol for testing LCS87 and the metrics 

reported are generally diverse making it difficult to compare the performance of LCS in 

different evaluation studies. Among the available tests of LCS, there are clear indications 

that the accuracy of LCS measurements can be questionable3,68 when comparing LSC 

values and reference measurements. LCS data can be of variable quality, and it is 

therefore of fundamental importance to evaluate LCS in order to choose the most 

appropriate ones for routine measurements or other case studies49. However, only a few 

independent tests are reported in academic publications. Hereafter, the results of the 

exhaustive review of existing literature on LCS evaluation that is not available elsewhere 

are presented. The main purpose of this review was to estimate the agreement between 

LCS data against reference measurements both with field and tests under controlled 

conditions carried out by laboratories and research institutes independent of sensor 

manufacturers and commercial interest. It can provide all stakeholders with exhaustive 

information for selecting the most appropriate LCS. Quantitative information was 

gathered from the existing literature about the performance of LCS according to the 

following criteria: 

1. Agreement between LCS and reference measurements 

2. Availability of raw data, transparency of data treatment making a-posteriori calibration 

possible 

3. Capability to measure multiple pollutants 

4. Affordability of LCSs taking into consideration the number of provided OEMs 
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2. Sources of available information, method of classification 

and evaluation 

2.1 Origin of data 

The research was focused on LCS for Particulate Matter (PM), ozone (O3), nitric dioxide 

(NO2) and carbon monoxide (CO), the pollutants that are included into the European 

Union Air Quality Directive27 References were also included for nitrogen monoxide LCSs. 

About 1423 independent laboratory or field tests of LCS versus reference measurements 

(called ‘Records’ in the rest of the manuscript) were gathered from peer-reviewed studies 

of LCS available in the Scopus database, the World Wide Web, the AirMontech website 

(http://db-airmontech.jrc.ec.europa.eu/search.aspx), ResearchGate, Google search, and 

reports from research laboratories. Sensor validation studies provided by LCS 

manufacturers or other sources with concern of a possible conflict of interest were not 

taken into consideration. In total, 64 independent studies were found from different 

sources including reports and peer-reviewed papers. Additionally, a significant number of 

test results came from reports published by research institutes. In fact, the rapid 

technological progress on LCS, the difficulty to publish LCS data that do not agree with 

reference measurements and the time needed to publish studies in academic journals 

makes the publication of articles not the preferred route. Instead, a great part of the 

available information is found in grey literature, mainly in the form of reports. A 

substantial quantity of presented results come from research institutes having a LCS 

testing program in place, e.g. the Air Quality Sensor Performance Evaluation Center (AQ-

SPEC)3, the European Union Joint Research Centre (EU JRC)1,34,41,66–72 and the United 

States Environmental Protection Agency (US EPA)79,86–89. 

A significant portion of the data comes from the first French field intercomparison 

exercise (Crunaire23) for gas and particle LCS carried out in January/February of 2018. 

This exercise was carried out by two members of the French Reference Laboratory for Air 

Quality Monitoring (LCSQA). The objective of the study was to test LCS under field 

conditions at Air Quality Monitoring Station of urban type sited at the IMT Lille Douai 

research facilities in Dorignies. A large number of different SSys and OEM were installed 

in order to evaluate their ability to monitor the main pollutants of interest in the ambient 

air: NO2, O3 and PM2.5/PM10. This exercise involved nearly 5 French laboratories in 

charge of air pollution monitoring and 10 companies (manufacturers or 

distributors/sellers), 23 SSys and OEM of different design and origin (France, 

Netherlands, United Kingdom, Spain, Italy, Poland, United States), for a total of more 

than sixty devices, when taking into account replicates. 

Within another project, called AirLab (http://www.airlab.solutions/), many LCSs were 

tested through field and indoor tests. Results are reported based on the Integrated 

Performance Index (IPI) developed by Fishbain et al.32 which is an integrated indicator 

of correlation, bias, failure, source apportionment with LCS, accuracy and time series 

variability of LCSs and reference measurements. Since the IPI is not available in other 

studies and cannot be compared with the metrics used in the current review, it was 

decided not to include the AirLab results in the current work. 

A shared database of laboratory and field test results and its associated scripts for 

summary statistics were created using the collected information. It will be possible to 

update the database with future results of LCS tests. The purpose of this development 

was to setup a structured repository to be used for comparing the performances of LCSs. 

Each database ‘Record’ describing laboratory or field LCS test results was included into 

the database only if comparison against a reference measurement (hereinafter defined as 

“comparison”) was provided. The comparison data allowed to evaluate the correlation 

between LCS data and reference measurements. Most of the reviewed studies reported 

only regression parameters obtained from the comparison between LCS and reference 

measurements, generally without more sophisticated metrics like Root Mean Square 

Error and measurement uncertainty (see section 3). 

http://db-airmontech.jrc.ec.europa.eu/search.aspx
http://www.airlab.solutions/
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2.2 Classification of low-cost sensors 

For each model of SSys, the OEM manufacturer was identified and the manufacturer of 

the SSys as well. Overall, we found 112 models of LCS including both OEMs (31) and 

SSys (81) manufactured by 77 manufacturers (16 OEM and 61 SSys). In addition, 19 

projects evaluating OEMs and/or SSys and reporting quantitative comparisons of LCS 

data and reference measurements were identified. They include the Air Quality Egg, Air 

Quality Station, AirCasting3,9,31,57, Carnegie Mellon31,92, CitiSense89 Cairsense39, Developer 

Kit3, HKEPD/14-0277174, making-sense.eu55, communitysensing.org79, MacPoll.eu68, 

OpenSense II8,56, Proof of Concept AirSensEUR41, SNAQ Heathrow54,62). Out of the 1423 r 

Records collected from literature, we identified 1192 Records (201 OEM and 991 SSys) 

from 90 alive sensors (25 OEM and 65 SSys) and 231 Records (119 OEM and 112 SSys) 

from 22 “non active” (or discontinued) LCSs (6 OEM and 16 SSys). “Low-cost” refers to 

the purchase price of LCS48 compared to the purchase and operating cost of reference 

analysers54 for the monitoring of regulated inorganic pollutants and particulate matter 

that can easily be an order of magnitude more costly. More recently, ultra-affordable 

OEMs are starting to appear on the market for PM monitoring.5,11,47. For the detection of 

𝑃𝑀2.5, some of these sensors are starting to achieve performances comparable to low-

cost OEMs manufactured in the Western world. Many of them are designed to be 

integrated in Internet of Things (IoT) networks of interconnected devices. Currently, for 

PM detection it is possible to purchase optical sensors that cost between a few tens and a 

few hundreds of euro. Those devices are manufactured in emerging economies such as 

the Republic of China and the Republic of Korea76. Some of these LCS can achieve similar 

performance to more expensive OEMs3,32,37,79,86–89. The data treatment of LCSs can be 

classified in two distinct categories: 

1. Processing of LCS data performed by “open source” software tuned according to 

several calibration parameters and environmental conditions. All data treatments 

from data acquisition until the conversion to pollutant concentration levels is known 

to the user. There were 234 Records identified comprising 108 OEMs and 126 SSys 

using open source software for data management. These 234 Records came from 34 

unique LCSs. Usually, outputs from these LCS are already in the same measurement 

units as the reference measurements. In this category, LCS devices are generally 

connected to a custom-made data acquisition system to acquire LCS raw data. 

Generally, users are expected to set a calibration function in order to convert LCS raw 

data to validate against reference measurements. 

2. LCS with calibration algorithms whose data treatment is unknown and without the 

possibility to change any parameter have been identified as “black boxes”. This is due 

to the impossibility for the user to know the complete chain of data treatment. 1189 

Records made up of 212 and 977 SSys not using open source software for data 

treatment were identified. These 1189 Records came from 34 unique LCSs. In most 

cases, these SSys are pre-calibrated against a reference system or, the calibration 

parameters can be remotely adjusted by the manufacturer. Finally, we should point 

out that some LCSs used for the detection of Particulate Matter (such as the OPC-N2; 

OPC-N3 by Alphasense and the PMS series from Plantower) could be used as open 

source devices if users compute PM mass concentrations using the available counts 

per bin. However, these PM sensors are mostly used as a “black box” with mass 

concentration computed by unknown algorithms developed by manufacturers. 

Clear definitions and examples of the principles of operation used by the different types 

of sensor (electrochemical, metal oxides, optical particulate counter, optical sensors) are 

reported in a recent work by WMO48. This work also describes observed limitations of 

each type of sensor such as, interference by meteorological parameters, cross-

sensitivities to other pollutants, drifts and aging effect. To date, there is a larger number 

of active and commercially available LCS (Figure 2). However, while most of the OEMs 

are open sources, allowing end-users to integrate them into SSys, most of the SSys 

themselves were found to be “black-box” devices. This is a limitation as the SSys might 

need a-posteriori calibration other than the one provided by the manufacturer, but raw-
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data are unavailable. LCS are also classified according to their commercial availability. 

LCSs were assigned to the “Commercial” category if they could be purchased and 

operated by any user. LCSs fell under the “Non-commercial” category when it was not 

possible to find a commercial supplier selling them. Typically, this type of LCS is used for 

research and publication and it is difficult for any user to repeat the same sensor setup. 

Figure 1 shows the number of LCSs, either OEM or SSys, that were found still active or 

discontinued, with open or “black box” type of data treatment and that are commercially 

available. 

 

Figure 1. Number of sensor models gathered from the literature review. Sensors has ben classified 

by their type of technology, availability, openness and commerciality. 
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2.3 Recent tests per pollutant and per sensor type 

Table 1 reports the number of ‘Records’, by pollutant and sensor technology, gathered in 

literature about validation and testing of LCSs against a reference system. Records were 

collected from laboratory (133) and field tests (1290). The majority of records refer to 

commercially available OEMs and SSys, even though a few references about non-

commercial LCS were also picked up. 

Table 1. Agreement between sensor and reference measurements Table 1. Number of analysed 
records for OEMs/Sensor Systems by pollutant and by type of technology. 

pollutant type Field/Lab 
n. 
records references 

𝑪𝑶 electrochemical FIELD 51 AQ-SPEC[3], Jiao[38], Sun[74], Wastine[82], 
Zimmerman[92], Marjovi[53], Karagulian[41], Popoola[62], 
Castell[12], Borrego[10], Cross[22], Gillooly[34] 

𝑪𝑶 electrochemical LAB 9 Sun[74], Mead[54], Castell[12], Gerboles[33], Wei[84], 

Zimmerman[92] 

𝑪𝑶 MOs FIELD 27 AQ-SPEC[3], Spinelle[69], Borrego[10], Piedrahita[60] 

𝑪𝑶 MOs LAB 2 AQ-SPEC[3], Piedrahita[60] 

𝑵𝑶 electrochemical FIELD 44 AQ-SPEC[3], Jiao[38], Bigi[8], Wastine[82], Spinelle[69], 
Karagulian[41], Mead[54], Popoola[62], Castell[12], 
Borrego[10], Cross[22], Gillooly[34], LCSQA[47] 

𝑵𝑶 electrochemical LAB 6 Castell[12], Gerboles[33], Wei[84] 

𝑵𝑶 MOs FIELD 1 LCSQA[47] 

𝑵𝑶𝟐 electrochemical FIELD 137 AQ-SPEC[3], Jiao[38], Sun[74], Mijling[55], Spinelle[68], 
Mueller[56], Bigi[8], Marjovi[53], Cordero[20], 
Karagulian[41], Wastine[82], Wastine[83], Mead[54], 
Popoola[62], Borrego[10], Castell[12], Cross[22], 
Duvall[27], Gillooly[34], Zimmerman[92], LCSQA[47] 

𝑵𝑶𝟐 electrochemical LAB 21 Williams[87], Sun[74], Vaughn[79], Castell[12], 
Spinelle[66], Gerboles[33], Wei[84], Sun[75], 
Zimmerman[92] 

𝑵𝑶𝟐 MOs FIELD 28 AQ-SPEC[3], US-EPA[78], Borrego[10], Piedrahita[60], 
Spinelle[68], Lin[50], LCSQA[47] 

𝑵𝑶𝟐 MOs LAB 10 Vaughn[79], Williams[87], Piedrahita[60] 

𝑶𝟑 electrochemical FIELD 65 Jiao[38], Spinelle[68], Mueller[56], Karagulian[41], 
Wastine[82], AQ-SPEC[3], Borrego[10], Castell[12], 
Cross[22], Duvall[27], Feinberg[30], LCSQA[47] 

𝑶𝟑 electrochemical LAB 10 Spinelle[66], Castell[12], Gerboles[33], Wei[84] 

𝑶𝟑 MOs FIELD 54 AQ-SPEC[3], Jiao[38], Marjovi[53], Borrego[10], 
Feinberg[30] 

𝑶𝟑 MOs LAB 3 AQ-SPEC[3], Spinelle[67], Vaughn[79] 

𝑶𝟑 UV FIELD 9 AQ-SPEC[3] 

𝑶𝟑 UV LAB 1 Sun[74] 

𝑷𝑴𝟐.𝟓 Electrical FIELD 6 AQ-SPEC[3] 

𝑷𝑴𝟐.𝟓 nephelometer FIELD 129 Borghi[9], Jiao[38], Feinberg[30], US-EPA[78], 
Williams[86], AQ-SPEC[3], Zikova[91], Chakrabarti[19], 
Borrego[10], Olivares[59], Holstius[36], Gao[32], 
Karagulian[40], LCSQA[47] 

𝑷𝑴𝟐.𝟓 nephelometer LAB 24 Manikonda[52], AQ-SPEC[3], Wang[81], Alvarado[2], 
Sousan[64], Holstius[36], Kelly[42], Austin[4] 

𝑷𝑴𝟐.𝟓 OPC FIELD 428 AQ-SPEC[3], Mukherjee[57], Feinberg[30], Jiao[38], 
Cavaliere[13], Williams[86], Borrego[10], Viana[80], 

Northcross[58], Holstius[36], Steinle[73], Han[35], 
Jovasevic[39], Gillooly[34], Sun[74], Dacunto[23], 
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Crilley[21], Di-Antonio[25], Badura[5], Pillarisetti[61], 
Kelly[42], Zheng[90], Laquai[46], Budde[11], Liu[51], 
LCSQA[47] 

𝑷𝑴𝟐.𝟓 OPC LAB 27 AQ-SPEC[3], Cavaliere[13], Manikonda[52], 
Northcross[58], Sousan[65], Pillarisetti[61], Kelly[42] 

𝑷𝑴𝟏 Electrical FIELD 6 AQ-SPEC[3] 

𝑷𝑴𝟏 nephelometer FIELD 1 LCSQA[47] 

𝑷𝑴𝟏 OPC FIELD 102 AQ-SPEC[3], Williams[86], Crilley[21], Di-Antonio[25], 
LCSQA[47] 

𝑷𝑴𝟏 OPC LAB 8 AQ-SPEC[3], Sousan[65] 

𝑷𝑴𝟏𝟎 nephelometer FIELD 26 AQ-SPEC[3], Borrego[10], LCSQA[47] 

𝑷𝑴𝟏𝟎 nephelometer LAB 1 Alvarado[2] 

𝑷𝑴𝟏𝟎 OPC FIELD 176 AQ-SPEC[3], Cavaliere[13], Borrego[10], Feinberg[30], 
Han[35], Jovasevic[39], Williams[86], Crilley[21], 
Budde[11], LCSQA[47] 

𝑷𝑴𝟏𝟎 OPC LAB 11 AQ-SPEC[3], Cavaliere[13], Manikonda[52], Sousan[64], 
Sousan[65] 

For the detection of Particulate Matter, the largest number of LCS tests were carried out 

for Optical Particle Counters (OPC) with 752 Records followed by Nephelometers with 181 

Both systems detect particulate matter by measuring the light scattered by particles, 

with the OPC being able to directly count particles according to their size. On the other 

hand, nephelometers estimate particle density that is subsequently converted into 
particle mass. For the detection of gaseous pollutants such as 𝑁𝑂2, 𝑁𝑂, 𝐶𝑂 and 𝑂3,the 

largest number of tests were performed using electrochemical sensors with 343 Records, 

followed by metal oxides sensors (MOs) with 343 records, followed by metal oxides 

sensors (MOs) with 125 Records (see Table 1). Electrochemical sensors are based on a 

chemical reaction between gases in the air and the working electrode of an 

electrochemical cell that is dipped into an electrolyte. In a MOs, also named resistive 

sensor, semiconductor, gases in the air react on the surface of a semiconductor and 

exchange electrons modifying its conductance. 

Table A2 reports the OEMs models currently used to monitor Particulate Matter and 
gaseous pollutants (𝑁𝑂2, 𝑁𝑂, 𝐶𝑂 and 𝑂3) according to their type of technology. SSys 

models measuring concentration of particulate matter and gaseous pollutants are 

reported in Table A3. We want to point out that several SSys can use the same set of 

OEMs. In a few cases, the same model of SSys was tested using different types of OEMs 

when performing validation tests34,41 . 

“Living” LCS are devices that are currently available for commercial or research 

purposes. Considering only the “living” LCSs of Table A2 and Table A3, one may observe 

that there are fewer OEMs (24) than SSys (65) and therefore different SSys are using 

the same sets of OEMs. Additionally, there is a lack of laboratory tests for the OEMs 

compared to SSys. Among the reviewed ‘Records’ only ~ 11% were attributed to 

laboratory tests. Most LCS (~ 90%) were tested in the field, where it is not possible to 

isolate the effect of single pollutants and/or meteorological parameters, since in the 

ambient air many of these parameters are correlated with each other. Establishing 

calibration models relying only on field results might lead to the situation where 

parameters that have no effect on the sensor data, but that are correlated with other 

variables that do have an effect, are taken into account in the calibration. The 

performance of such calibration models can be poor when LCSs are used at sites other 

than the ones used for calibration where the relationship between the parameter used for 

calibration and the ones having an effect on the response of LCSs may change29,51,56. The 

research covered the period between 2010 and 2019 (year of publication). As shown in 

Figure 2, only a few preliminary studies about the evaluation of performance of LCSs 

were published between 2010 and 2014. In 2015, we recorded the largest number of 

references with 27 different works publishing results about performances of LCS for air 
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quality monitoring. For the test studies carried out by AQ-SPEC3, Records were evaluated 

per model of LCS. 

Overall, 34 references reporting field tests with LCSs co-located at urban sites were 

found, as well as 7 references for rural sites, and 10 references for traffic sites. Most of 

the laboratory and field tests reported hourly data (610 Records for 86 models of LCSs). 

We also found 248 Records for 42 LCSs using daily data. Therefore, hourly data were 

considered statistically more significant. 

 

Figure 2. Number of references per year of publication. 
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3. Method of evaluation 

The European Union Air Quality Directive27 indicates that measurement uncertainty shall 

be the main indicator used for the evaluation of the data quality objective of air pollution 

measurement methods27.However, the evaluation of this metric is cumbersome30 and it is 

not included in the majority of sensor studies (see Table 2). For the performance criteria 

used to evaluate air quality modelling applications77, the set of statistical indicators 

includes the Root Mean Square Error (RMSE), the bias, the Standard Deviation (SD) and 

the correlation coefficient (R), of which RMSE is thought to be the most explicative one. 

The statistical indicators can be better visualised in a target diagramme68.Unfortunately, 

Table 2 also shows that RMSE is mainly unreported in the literature. As already 

mentioned above, integrated indicators like the IPI32 would breach our objective to use 

solely quantitative and comparable indicators. Additionally, it is impossible to compute 

IPIs a posteriori since time series are mainly not available in literature.  

We therefore had to rely on the most common metrics, i. e., the coefficient of 

determination R², the slope and intercept of linear regression line between LCS data and 
reference measurement. 𝑅2 can be viewed as a measure of goodness of fit (how close 

evaluation data is to the reference measurements) and the slope of the regression as 
level of accuracy. 𝑅2 measures the strength of the association between two variables but 

it is insensitive to bias between LCS and reference data, either relative bias (slope 
different from 1) or absolute bias (intercept different from 0). 𝑅2 is a partial measure of 

how much LCS data agree with reference measurements according to a regression 

model6. A larger 𝑅2 reflects an increase in the predictive precision of the regression 

model. An increase of 𝑅2 may not be the result of an improvement of LCS data quality 

since 𝑅2 may increase when the range of reference measurements increases1 or 

according to the seasonality of sampling reported in different studies. Moreover, since 

LCS are affected by long time drift and ageing, longer field studies are more likely to 
report lower 𝑅2 than shorter ones. 

Nearly all published studies report the coefficient of determination (𝑅2) between 

reference and LCS data (see Table 2). Fortunately, the majority of these studies also 

report the slope and intercept of the regression line between LCS data and reference 

measurements that describe the possible bias of LCS data. A few studies also report the 

Root Mean Square of Error, RMSE8,12,20,22,31,35,37,41,51,55,60,68,90 which clearly indicates the 

magnitude of the error in LCS data unit and is also sensitive to extreme values and 

outliers. Only a few studies report the measurement uncertainty12,41,47,68,84,88,93. 

Therefore, for the purpose of this work, we only focused on the analysis of the 

comparison of laboratory and field tests of LCSs. 

Table 2. Number of records gathered by metric used in this work. 

metrics n. Field Tests n. Laboratory Tests 

 1290 133 

𝑅2 from calibrations 218 60 

𝑅2 from comparisons 1164 72 

slope of reg. line 1063 55 

intercept 1027 54 

RMSE 285 5 

Uncertainity (U) 153 29 

Table 2 also gives the number of R² of calibration that was found in literature. Generally, 

these studies also present the model equations used for calibration. The number of 

studies reporting the R² of calibration represent about 10 % of the studies reporting R² 

of comparison of calibrated LCSs and reference data using linear regressions.  
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Although the data set of R² for calibration is limited in size, we have investigated if the 

type of calibration has an influence on the agreement between calibrated LCSs data and 

reference measurements. 

In order to estimate the efficiency of calibration models, the reported coefficient of 

determination R2 was used as an indicator of the amount of total variability explained by 

the model (see Calibration of LCSs). This can be used as an indication of performance of 

the calibration model chosen to validate the LCS against a reference system.  

Using the highest R² of comparison together with the slope of comparison line near to 

1.0, a shorter set of best performing LCS will be drawn together with their sensor 

technology. It was decided to drop the analysis of intercepts different from 0, accepting 

that LCS may produce unscaled data with bias provided that LCS data would vary in the 

same range as reference measurements due to the slope being close to 1. In any case, 

Table 4 and Table A4 show that the extent of deviation from 0 of the intercepts did not 

contribute significantly to the bias of LCS data for the best performing LCSs. 
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4. Evaluation of sensor data quality 

4.1 Calibration of sensors 

The method used for the calibration of LCS is generally considered confidential 

information by the majority of LCS manufacturers and little information can be found 

about the calibration of LCS that fall under the category “black box” compared to the 

ones that fall under the category “Open source”. In fact, several studies can be found 

about the calibration of “Open source” LCSs, both with laboratory and field tests. 

Calibration consists of setting a mathematical model describing the relationship between 

LCS data and reference measurements. However, most of the calibrations were carried 

out during field tests, while only a limited number of laboratory based calibration 

experiments were found. 

Out of a total of 1423 records in the database, 352 Records (25%) included information 

about LCS calibration giving details of used statistical or deterministic models (see Table 

3). However, among these 1423 Records with details of the calibration method, about 20 
% do not report 𝑅2, that is the principal metrics used for LCS performance evaluation. 

This is typically the case for Artificial Neural Networks, Random Forest and support vector 
regression calibration methods (see below) and it explains why the number of 𝑅2 found 

for calibration in Table 2 is lower than 352. 

The linear model and the multi-linear regression model (MLR) which includes the use of 

covariates to improve the quality of the calibration are the most widely used techniques 

to calibrate the LCS data against a reference measurement. Other calibration approaches 

used the exponential, logarithmic, quadratic, Kohler theory of particles growing factor 

and few types of supervised learning techniques including Artificial Neural Networks 

(ANN), Random Forest (RF:), Support Vector Machine (SVM:) and support vector 

regression (SVR). Most of the MLR models used covariates such as meteorological 

parameters (temperature and relative humidity) and cross-sensitivities from gaseous 
interferent such as nitric dioxide (𝑁𝑂2), Nitric Monoxide (𝑁𝑂) and Ozone (𝑂3)in order to 

improve LCS calibration. LCS data time-drift was rarely included into the list of calibration 

covariates39,60
. 

Table 3. Types of calibration models used for the calibration of sensors at different time 
resolutions (ANN: artificial neural network, exp: exponential; log: logarithmic; MLR: multilinear 
regression; quad: quadratic; RF: random forest; SVM: support vector machine; SVR: support 
vector regression) 

pollutant 
calibration 
model 

n. 
records references 

Median 
R2 calib 

Median 
R2 

CO ANN 2 Wastine[82], Spinelle[69] NA 0.58 

CO linear 12 Sun[74], Wastine[82], Castell[12], Cross[22], 
Gerboles[33], Spinelle[69], Zimmerman[92] 

0.85 0.15 

CO MLR 21 Jiao[38], Karagulian[41], Wastine[82], 
Wei[84], Piedrahita[60], Spinelle[69], 
Zimmerman[92] 

0.89 0.83 

CO quad 12 AQ-SPEC[3] 0.63 NA 

CO RF 1 Zimmerman[92] 0.91 NA 

NO ANN 2 Wastine[82], Spinelle[69] NA 0.57 

NO linear 8 Wastine[82], Castell[12], Cross[22], 
Spinelle[69], Gerboles[33], LCSQA[47] 

0.96 0.032 

NO MLR 20 Jiao[38], Bigi[8], Karagulian[41], Wastine[82], 
Spinelle[69], Wei[84] 

0.92 0.91 

NO RF 2 Bigi[8] NA 0.9 

NO SVR 2 Bigi[8] NA 0.90 
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NO2 ANN 7 Spinelle[68], Cordero[20], Wastine[82], 
Wastine[83] 

0.87 0.94 

NO2 linear 25 Sun[74], Vaughn[79], Spinelle[68], 
Wastine[82], Wastine[83], Castell[12], 
Cross[22], Gerboles[33], Zimmerman[92], 
Lin[50], LCSQA[47] 

0.29 0.17 

NO2 log 1 Vaughn[79] 0.89 NA 

NO2 MLR 48 Jiao[38], Sun[74], Mijling[55], Spinelle[68], 

Mueller[56], Bigi[8], Cordero[20], 
Karagulian[41], Wastine[82], Wastine[83], 
Piedrahita[60], Wei[84], Sun[75], 
Zimmerman[92] 

0.81 0.81 

NO2 quad 6 AQ-SPEC[3] 0.61 NA 

NO2 RF 7 Bigi[8], Cordero[20], Zimmerman[92] 0.86 0.91 

NO2 SVM 4 Cordero[20] 0.85 0.94 

NO2 SVR 2 Bigi[8] NA 0.78 

O3 ANN 2 Spinelle[68], Wastine[82] NA 0.89 

O3 linear 13 AQ-SPEC[3], Sun[74], Spinelle[68], 
Wastine[82], Castell[12], Cross[22], 
Gerboles[33], LCSQA[47] 

0.84 0.53 

O3 log 1 Vaughn[79] 0.88 NA 

O3 MLR 20 Jiao[38], Spinelle[68], Karagulian[41], 
Wastine[82], Spinelle[67], Wei[84] 

0.91 0.88 

O3 quad 9 AQ-SPEC[3] 0.72 NA 

PM1 Kholer 2 Di-Antonio[25] NA 0.74 

PM1 log 6 AQ-SPEC[3] 0.76 NA 

PM10 exp 6 AQ-SPEC[3] 0.59 NA 

PM10 Kholer 2 Crilley[21] NA NA 

PM10 linear 3 AQ-SPEC[3], Cavaliere[13], Jovasevic[39] 0.77 0.63 

PM10 log 7 AQ-SPEC[3] 0.58 NA 

PM10 quad 1 Alvarado[2] 0.65 NA 

PM10-
2.5 

linear 4 Sousan[64], Han[35], Jovasevic[39] 0.63 0.98 

PM2.5 exp 3 Dacunto[23], Kelly[42], Austin[4] 0.91 0.97 

PM2.5 Kholer 4 Crilley[21], Di-Antonio[25] NA 0.78 

PM2.5 linear 36 Mukherjee[57], Wang[81], Alvarado[2], 
Cavaliere[13], Jovasevic[39], Olivares[59], 
Kelly[42], Zheng[90], Holstius[36] 

0.84 0.67 

PM2.5 log 7 AQ-SPEC[3], Laquai[46] 0.73 NA 

PM2.5 MLR 17 Jiao[38], Sun[74], Zheng[90], Holstius[36], 
Liu[51] 

0.81 0.65 

PM2.5 quad 8 Chakrabarti[19], Alvarado[2], Zheng[90], 
Gao[32] 

0.87 0.88 

PM2.5 RF 3 Liu[51] NA 0.79 

PM2.5-
0.5 

linear 9 Northcross[58], Steinle[73], Han[35], 
Jovasevic[39] 

0.84 0.98 

PM2.5-
0.5 

MLR 1 Jiao[38] 0.6 0.45 

PM2.5-
0.5 

quad 6 AQ-SPEC[3], Manikonda[52] 0.82 NA 
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When 𝑅2 is both available for calibration and comparison, the median of 𝑅2 is higher for 

calibration (mean of 𝑅2 = 0.70) than for comparison (median of 𝑅2 = 0.58). This is to be  

expected, since it is easier to fit a model on a short calibration dataset than correctly 

forecast LCSs data using the calibration model at later dates. For gaseous LCSs, 
calibration using a linear model gives the worst 𝑅2 for field comparison. Linear calibration 

should thus be avoided for gas LCSs. For 𝐶𝑂 and 𝐶𝑂, the calibration method giving the 

highest 𝑅2² (about 0.90) is the MLR method using temperature or relative humidity as 

covariates. The use of supervised learning techniques (ANN, RF or SVR) either did not 

improve performance for CO, or gave similar results than MLR for NO. This is in slight 

contradiction with other studies about the performance of supervised techniques25,40. In 

the majority of cases, these tested LCSs consisted of electrochemical sensors. For 𝑁𝑂2, 
supervised learning techniques (ANN, RF, SVM or SVR) performed slightly better than 
MLRs looking at the 𝑅2 of comparison tests in field, except for SVR, which is in slight 

contradiction with other studies25. However, the number of records is much higher for 

MLR than for supervised learning techniques. MLR was applied to both MOs sensor and 

electrochemical sensors which resulted in scattered R² when looking at individual studies. 

Additionally, supervised learning techniques may be more sensitive to re-location than 

MLR29. 
For 𝑂3, ANN and MLR calibration gave similar 𝑅2 of comparison (median value about 

0.90). As for 𝑁𝑂2, the higher number of studies makes the 𝑅2 of the MLR method more 

significant than the one of ANN. 

For PM, the 𝑅2 for comparison tests are very scattered over the calibration methods. 

Some high values (𝑅2 higher than 0.95) were reported for studies using a linear 

calibration while MLR did not perform well (𝑅2 < 0.5). These results are misleading, since 

the good results with linear calibration are generally obtained by discarding LSCs data 

obtained with relative humidity exceeding a threshold between 70 and 80% above which, 
humidity is responsible for particle growth21,26. This effect is more important for 𝑃𝑀10 

than for 𝑃𝑀1 and 𝑃𝑀2.5. Other studies did not discard high relative humidity, they took 

into consideration the particle growing factor either on mass concentration with an 
exponential calibration model (4,24,43) with a median 𝑅2 of 98 or using the Kölher theory 

on PM mass concentration36 or directly for the particles beans of each OPC bin [100] 

leading to 𝑅2 about 0.80. 

Figure 3 shows a summary of all mean 𝑅2 obtained from the calibration of SSys against 

reference measurements. Results were grouped by model of SSys and averaged per 

reference work. For the same SSys we can observe 𝑅2 ranging between 0.40 and 1.00. 

This shows the variability of the performance of SSys depending on the type of 

calibration, type of testing sites and seasonality, making it difficult to compare the results 

of the different studies. Calibration of LSC against a reference analyser was found to be 

carried out using different averaging times. Test results with hourly data are presented in 

Figure A1 and test results with minute data time are given in Figure A2. The best 

performance, according to the time average availability in literature and tests in 

laboratory and/or in the field, were found for: 

● For the measurement of 𝑃𝑀2.5, 𝑅
2 ~ 1 close to 1 were found for hourly data of 

PMS1003 by Plantower43 and for the PMS3003, Dylos DC1100 PRO and 
DC1700 by Dylos for minute data3,73,90.Strangely, higher 𝑅2 were reported for 

the Plantower and Dylos when calibrated with minute data than for hourly data. 
The OPC-N2 by AlphaSense3 reported values of 𝑅2 falling within the range of 0.7 

- 1.0. The same OEM sensor OPC-N2, reported values of 𝑅2 just above 0.7 when 

measuing 𝑃𝑀1 while it did not show a good performance when measuring 

𝑃𝑀10
3.We need to stress that optical sensors, such as OPCs and nephelometers, 

are somewhat limited in coping with gravity effects when detecting coarse 

particulate matter, because of the low-efficiency of the sampling system. Most of 

the regression models used for the calibration of LCSs used hourly data. 

● For the calibration of 𝑂3 LCS, the highest values of 𝑅2 for hourly data was reported 

for FIS SP-61 by FIS and O3-3E1F by CityTechnology (Figure A1)66. On the 
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other hand, for minute data, values of 𝑅2 close to 1 were found for AirSensEUR 

(v.2) by LiberaIntentio41 as well as for the S-500 by Aeroqual3 (Figure A2). 

AirSensEUR used a built-in AlphaSense OX-A431 OEM. We want to point out that, 

most of the MLR models used for calibrating 𝑂3 LCSs needs 𝑁𝑂2 to correct for the 

strong 𝑁𝑂2 cross-sensitivity. 

● For the calibration of 𝑁𝑂2 LCSs, we found values of 𝑅2 for hourly data within the 

range 0.7 - 1.0 for the NO2-B42F (by Alphasense84), AirSensEUR (v.2) by 

LiberaIntentio41 and for the minute values MAS74 (see Figure 3). The NO2 

measurement of the AirSensEUR (v.2) are carried out using the NO2-B43F OEM 

by AlphaSense. 

● Most of the Records about the calibration of 𝐶𝑂 LCSs showed high values of 𝑅2. As 

shown in Figure A1, the OEMs CO 3E300 by City Technology34 and CO-B4 by 
Alphasense84 reported 𝑅2 ~ 1 for hourly data. High values of 𝑅2 were also 

reported for the SSys AirSensEUR (v.2), when calibrating CO minute data41 
(Figure A2). Other LCSs reporting values of 𝑅2 within the range 0.7 - 1.0 for 

hourly data consisted of the MICS-4515 by and SGX Sensortech60, the Smart 

Citizen Kit by Acrobotic3 and the RAMP93 

 

Figure 3. Mean 𝑅2 for obtained from the calibration of sensor systems against reference 

measurements. 
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4.2 Comparison of calibrated low-cost sensors with reference 
measurements 

In this review, Records describing the comparison of LCS data with reference 

measurements came from “open source” and “black box” LCSs. As for the Records 

collected from the calibration of LCS, comparison with reference system was carried out 

at different time-resolutions. Here we only report comparisons of hourly data with 565 
and 151 Records from SSys and OEMs, respectively. In Figure 4 we have reported the 𝑅2 
values for SSys per reference averaged for all pollutants measured by each SSys. One 

can observe scattered of 𝑅2 for a few SSys that are tested in several references in 

different locations, seasons and durations. 

Figure A3 and Figure A4 show the distribution of 𝑅2 of LCSs hourly and minute values 

measuring 𝑃𝑀2.5, 𝑃𝑀10, 𝑃𝑀1, 𝑂3, 𝑁𝑂2 and 𝐶𝑂 against reference measurements: 

● For the SSys, PA-II by PurpleAir3 and PATS+ by Belkley Air61 showed the 
highest 𝑅2 with values between 0.8 and 1.0. Other LCSs with 𝑅2 values ranging 

between 0.7-1.0 included the PMS-SYS-1 by Shinyei, the Dylos 1100 PRO by 

Dylos, the MicroPEM by RTI, the AirNUT by Moji China  the Egg (2018) by 

Air Quality Egg, the AQT410 v.1.15 by Vaisala, the AirVeraCity by 

AirVeraCity, the NPM2 by MetOne23 and, the Air Quality Station by AS LUNG3. 

Nevertheless, we need to point out that the performance of LCSs measuring 

PM10, on average, was very poor. 

● For the hourly PM measurements of OEMs (Figure A5), the OPC-N2, OPC-
N33,5,21,31,57 the SDS011 by Nova Fitness5 showed 𝑅2 values in the range 0.7 - 

1.0. For the daily PM measurements of OEMs (Figure A6), we found 𝑅2 within the 

range 0.7 - 1.0 for the OPC-N2, OPC-N33. 

● For the daily PM measurements of SSys (Figure A7), PA-II,3 AirQUINO by CNR13 
showed 𝑅2 values close to 1 for 𝑃𝑀2.5. 

● For gaseous pollutants, high 𝑅2 ranging between 0.7 and 1.0 were found for the 

following multipollutant LCSs: AirSensEUR (v.2) by LiberaIntentio41, the 

AirVeraCity, the AQY and S-500 by Aeroqual and the SNAQ of the University of 

Cambridge (Figure A3). 

● For the hourly gaseous measurements (Figure A5), we found very few OEMs with 
𝑅2 in the range 0.7 - 1.0. These included the CairClip O3/NO2 by 

CairPol28,31,68,89, the Aeroqual Series 500 (and SM50)31, the O3-3E1F by 

CityTechnology31,34,68,70 and the NO2-B43F by Alphasense75,93. On the other 

hand, we found very few Records for SSys using daily data. Additionally, one can 

notice, comparing Figure A4 and Figure A5, that the performance of OEMs is 

generally enhanced when they are integrated inside a SSys, except for 𝑃𝑀10. 

Figure A8 and Figure A10 show selected SSys that gave a slope of linear regression line 
of hourly LCS data versus reference measurement from 0.5 to 1.5 and 𝑅2 higher than 

0.7. This selection includes the AirSensEUR, the AirVeracity, and the S-500 for 

gaseous pollutants and the AirNut, AQY v0.5, Egg v.2 (PM), the NPM2 for hourly data 

and AIRQuino, AQY v0.5, Egg v.2 (PM) and the PA-I for daily data. Figure A9 and 

Figure A11 show the same selection as Figure A8 but for OEMs. This list includes the 
SM50, the CairClip O3/NO2, the S-500 (𝑂3, 𝑁𝑂2), the NO2-B4F (𝑁𝑂2) for gaseous 

measurements and the Nova Fitness SDS011 for 𝑃𝑀2.5, measurements for hourly data 

and the OPC-N2 by Alphasense and the DataRAM for daily data. 
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Figure 4. Mean 𝑅2 for obtained from the comparison of sensor systems against reference 

measurements. 
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Figure 5. Prices of SS grouped by model. (Numbers in bold indicates the number of pollutants 
measured by each sensor. x-axis uses logarithmic scale). Numbers in bold indicate the number of 
open source (blue) and black box (black) records. Names of ‘living’ & ‘updated’ and ‘non-living’ 

sensors are indicated in black and red colour, respectively. 𝑁𝐶 indicates non-commercially available 

sensor. 
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5. Cost of purchase 

For the evaluation of the price of LCSs, we considered all SSys manufactured by 

commercial companies. Operating costs such as calibration, maintenance, deployment 

and data treatment are not included in the estimated price of SSys. Figure 5 shows the 

commercial price of LCSs by model and number of measured pollutants and Figure A13 

shows the prices for OEMs. There are a large number of SSys measuring one pollutant 

and only a few measuring multiple pollutants. Most OEMs are open source devices 

(Figure A13). On the other hand, most of the SSys are “black boxes” (Figure 5). 

Therefore, most of the SSys cannot be easily re-calibrated by users. In fact, most SSys 

are intended to be ready-to-use air quality monitors. In Figure 6 we have shortlisted the 

best SSys according to their level of agreement with reference systems. Figure 6 includes 

SSys with hourly and daily data showing 𝑅2 higher than 0.85 and slopes ranging between 

0.8 and 1.2. The Figure shows the price, the number of pollutants being measured, the 

averaging time and the data openness of the selected SSys. Table 4 reports the SSys 

shortlisted in Figure 6 with the R² and slope mean values, the list of pollutants being 

measured, the openness of data, their commercial availability and price. Among “open 

source” SSys, we could identify the AirSensEUR by LiberaIntentio and the AIRQuino by 

CNR. The remaining shortlisted SSys were identified as “black box”. The AirSensEUR 

(v.2) resulted in a mean 𝑅2 value of 0.90 and a slope of 0.94 while the AIRQuino 

resulted in a mean 𝑅2 value of 0.91 and a slope of 0.97. We need to point out that, to 

date, the AIRQuino can be used for the detection of up to five pollutants (𝑁𝑂2, 𝑁𝑂, 𝐶𝑂, 𝑂3 
and 𝑃𝑀). However, only data for PM were available at the time of this review. 

 

Figure 6. Price of low-cost sensor systems associated to measurements performed at different 

averaging times. Numbers in bold indicate the number of pollutants measured by open source 
(blue) and black box (black) sensors. Only records with 𝑅2 > 0.85 and 0.8 < 𝑠𝑙𝑜𝑝𝑒 < 1.2 are 

shown. Names of ‘living’ & ‘updated’ and ‘non-living’ sensors are indicated in black and red colour, 
respectively. 𝑁𝐶 indicates non-commercially available sensor. 
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Table 4. Shortlist of sensor systems showing good agreement with reference systems (𝑅2 > 0.85; 

0.8 < slope < 1.2) for 1hour time averaged data. 

Model 

 pollutant 
mean 
𝑹𝟐 

mean 
slope 

mean 
intercept open/close living commercial 

price 
(EUR) 

AirNut 𝑃𝑀2.5 0.86 0.88 8.6 black box Y commercial 132 

PA-I 𝑃𝑀1 0.95 0.92 0.52 black box N commercial 132 

PA-II 𝑃𝑀1 0.99 0.82 1.8 black box Y commercial 176 

Egg (2018) 𝑃𝑀1 0.87 0.85 0.095 black box Y commercial 219 

PATS+ 𝑃𝑀2.5 0.96 0.92 0.05 black box Y commercial 440 

S-500 𝑁𝑂2, 𝑂3 0.87 1 0.27 black box Y commercial 440 

CairClip 
O3/NO2 

𝑂3 0.88 0.88 12 black box Y commercial 600 

Portable AS-
LUNG 

𝑃𝑀1 0.89 0.87 1 black box Y non 
commercial 

880 

AirSensEUR 
(v.2) 

𝑁𝑂2, 𝑂3, 
𝐶𝑂, 𝑁𝑂 

0.91 0.98 5.7 open source Y commercial 1600 

Met One 
(NM) 

𝑃𝑀2.5 0.86 1.1 2.8 black box Y commercial 1672 

Air Quality 
Station 

𝑃𝑀1 0.88 0.9 0.85 black box Y non 
commercial 

1760 

AQY v0.5 𝑃𝑀2.5 0.87 0.97 4 black box updated commercial 2640 

Vaisala 
AQT410 
v.1.15 

𝐶𝑂 0.87 0.97 0.23 black box Y commercial 3256 

2B Tech. 
(POM) 

𝑂3 1 1 0.74 black box Y commercial 3960 

AQMesh 
v.3.0 

𝑁𝑂 0.87 0.88 0.76 black box N commercial 8800 

Figure 7 shows the relationship between the mean R² of SSys and the decimal logarithm 

of the price of LCSs. In Figure 7 only the “living” LCSs are compared. It shows that for 

OEMs there is not a significant linear relationship between the price of OEMs and the 
value of R². Conversely, there is a significant increase in 𝑅2 with the logarithm of the 

price of SSys. The regression equations indicated in Figure 7 shows that R² can increase 

of 14 ± 6% for a 10-fold increase of the prices of SSys which is a limited increase at high 
cost. Figure 7 also shows a higher scattering of 𝑅2 at the low end of the price scale with 

SSys price lower than 500 euro with more fluctuation of the SSys performance. 
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Figure 7. Relation between prices of OEMs/Sensor Systems (SS) and 𝑅2 for field test only. 

Logarithmic scale has been set for both axis. Open source and black box models are indicated with 

open and full circles, respectively. Names of ‘living’ and ‘non-living’ sensors are indicated in black 
and blue colour, respectively. 𝑅2 refers to data averaged over 1 hour. Grey shade in the fit plots 

indicate a pointwise 95% confidence interval on the fitted values. 
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6. Conclusions 

According to the European Air Quality Directive, a sensor system can be considered 

“Equivalent” when it meets the Data Quality Objectives (DQOs) set for data capture and 

uncertainty. In order for sensor system measurement to be incorporated into the legal 

framework set by the Air Quality Directive in Europe, they shall satisfy one of the data 

quality objectives (DQOs) of the Directive. DQOs, defined as the maximum allowed 

relative uncertainty, are defined either for reference and indicative measurements or for 

objective estimations. For inorganic gaseous pollutants, they correspond to 15, 25 to 30 

and 75 %, respectively. Although, the objective of sensor systems is to provide the most 

accurate air pollution measurements, it is most likely that the DQO for reference 

measurements is out of reach while it is believed that by improving the sensor calibration 

procedures the DQO of “Indicative Measurements” could be met at fixed monitoring sites. 

There is little information available in the literature regarding calibration of LCSs. 
Nevertheless, it was possible to list the calibration methods giving the highest 𝑅2 when 

applied to the results of field tests. For 𝐶𝑂 and 𝑁𝑂 our review showed that the MLR 

models were the most suitable for calibration. ANN gave the same level of performance 

than MLR only for NO. For 𝑁𝑂2 and 𝑂3, supervised learning models such as, SVR, SVM, 

(not for 𝑂3), ANN, and RF followed by MLR models showed to be the most suitable 

method of calibration. Regarding Particulate Matter, the best results were obtained with 

linear models when calibrating 𝑃𝑀2.5. However, these models were applied only to 𝑃𝑀2.5 

when high relative humidity data (> 75-80%) were discarded. For higher relative 

humidity, models accounting for the growing of the particulates must be further 

developed. So far, the calibration using the Khöler theory seems to be the promising 

method. 

A list of SSys with 𝑅2 and slope close to 1.0 were drawn from the whole database of 

Records of comparison tests of LCSs data versus reference measurements that indicates 

the best performance of SSys as shown in Figure 8. In fact, Figure 8 evidences a best 

selection region for SSys with blue background. The best SSys would be the one which 
reaches the point with coordinates 𝑅2 = 1 and slope = 1. Within the blue background 

region, the following SSys can be found: the 2B Tech. (POM), the PA-II, the 

AirSensEUR (v.1), the PA-I, the S-500, the AirSensEUR (v.1), the SNAQ, the 

Vaisala AQT410 v.15, the MetOne (NM), the Egg (v.2), the AQY v0.5, the CairClip 

O3/NO2, the AQMesh v3.0, the AQT410 v.11 and the AirVeraCity. Additionally, 

Figure 8 shows that there are more SSys underestimating reference measurements with 

slopes lower than 1 than SSys overestimating reference measurements. Analysing the 
price of SSys and their R², it was found that 𝑅2 increases of 14 % for a 10-fold increase 

of the prices of SSys, a limited improvement for a large price increase. 
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Figure 8. Correspondence between 𝑅2 and slope for sensor systems (SS) for 1 hour averaging 

time. Only sensor models with 𝑚𝑒𝑎𝑛 𝑅2 > 0.75 and 0.5 < 𝑚𝑒𝑎𝑛 𝑠𝑙𝑜𝑝𝑒 < 1.2 are shown. Names of 

‘living’ and ‘non-living’ sensors are indicated in black and blue color, respectively. 

Although this report gives an exhaustive survey of the independent LCS evaluations, the 

concept of comparing LCS field tests from different studies can be difficult and may result 

in misleading conclusions. It is difficult because of the lack of uniformity in the metrics 

representing LCS data quality between studies makes them difficult to compare. 

Comparing field tests of LCS may also be misleading, since in order to take into 

consideration the highest number of studies it was necessary to mainly rely on the 
coefficient of determination 𝑅2. However,𝑅2 is too dependent on the range of reference 

measurements, on the duration of test field and on the season and location of the tests, 
making change of 𝑅2 not completely dependent on LCS data quality or of calibration 

methods. This shortcoming makes the standardisation of a protocol for evaluation of 

LCSs at international level a high priority, while intercomparison exercises where LCSs 

are gathered at the same test sites and at the same time are also greatly needed. 

Finally, among open source sensor systems we could identify the AirSensEUR (v.2) by 

LiberaIntentio and the AIRQuino by the CNR for the detection of 𝑁𝑂2, 𝐶𝑂, 𝑂3, 𝑁𝑂 and 

𝑃𝑀, respectively. As we can see, the AirSensEUR (v.2) resulted in a mean 𝑅2 value of 

0.90 and a slope of 0.94 while the AIRQuino resulted in a mean 𝑅2 value of 0.91 and a 

𝑠𝑙𝑜𝑝𝑒 of 0.97. We need to point out that, the AIRQuino can measure up to five pollutants 
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(𝑃𝑀2.5, 𝑃𝑀10, 𝑁𝑂2, 𝑂3, 𝐶𝑂 and 𝑁𝑂, 𝐶𝑂2 and 𝑉𝑂𝐶𝑠), however, only data fror 𝑃𝑀 were 

available at the time of this review. On the other hand, the AirSensEUR (v2) is a 

complete sensor system that can also measure PM beside gaseous pollutants including 

“𝐶𝑂2 and 𝑅𝑛 (radon)”. This sensor system is already operative and has undergone 

multiple calibrations and field tests where measurements of gaseous pollutants showing 

good agreement with reference measurements. 

To conclude this market analysis, the only sensor system satisfying the requirements of 

multipollutant, availability of raw data, transparency of all applied data treatment, 

availability of evaluation of the performance of sensor system in literature with high 

coefficient of determination (>0.85) has been found to be the AirSensEUR v.2. 
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Appendix A 

Table A1. Number of analysed records and sensor models by averaging time. 

Averaging time n. records n. OEMs & SS 

1 hour 610 86 

5 min 253 40 

24 hour 248 42 

1 min 214 33 

 

Table A2. Model of OEMs by pollutant, type, openness and price. 

model pollutant type reference open/close living price 

CO-B4 CO electrochemical Wei[84] open source Y 50 

CO 3E300 CO electrochemical Gerboles[33] open source Y 100 

DataRAM pDR-
1200 

PM2.5 nephelometer Chakrabarti[19] black box N  

DiscMini PM OPC Viana[80] open source Y 11000 

DN7C3CA006 PM2.5 nephelometer Sousan[64] open source Y 10 

DSM501A PM2.5 nephelometer Wang[81], 
Alvarado[2] 

open source Y 15 

FIS SP-61 O3 MOs Spinelle[67] open source Y 50 

GP2Y1010AU0F PM2.5, 
PM10 

nephelometer Olivares[59], 
Manikonda[52], 
Sousan[64], 
Alvarado[2], 
Wang[81] 

open source Y 10 

MiCS-2710 NO2 MOs Spinelle[68], 
Williams[87] 

open source N 7 

MICS-4514 CO, NO2 MOs Spinelle[69], 
Spinelle[68] 

open source Y 20 

NO-3E100 NO electrochemical Spinelle[69], 
Gerboles[33] 

open source Y 120 

NO-B4 NO electrochemical Wei[84] open source Y 50 

NO2-3E50 NO2 electrochemical Spinelle[68], 
Spinelle[66], 
Gerboles[33] 

open source Y 100 

NO2-A1 NO2 electrochemical Williams[87] black box Y 50 

NO2-B4 NO2 electrochemical Spinelle[66], 
Spinelle[68] 

open source N 50 

NO2-B42F NO2 electrochemical Wei[84] open source N 50 

NO2-B43F NO2 electrochemical Sun[75] open source Y 50 

O3-3E1F O3 electrochemical Spinelle[66], 
Spinelle[68], 
Gerboles[33] 

open source Y 500 

O3-B4 O3 electrochemical Spinelle[66], 
Spinelle[68], 
Wei[84] 

open source N 50 

OPC-N2 PM1, 
PM2.5, 
PM10 

OPC AQ-SPEC[3], 
Mukherjee[57], 
Sousan[65], 
Feinberg[30], 
Crilley[21], Di-

black box, 
open source 

N 310 
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Antonio[25], 
Badura[5], 
LCSQA[47] 

OPC-N3 PM1, 
PM2.5, 
PM10 

OPC AQ-SPEC[3] black box Y 338 

PMS1003 PM2.5 OPC Kelly[42] black box Y 20 

PMS3003 PM2.5 OPC Zheng[90], Kelly[42] black box Y 30 

PMS5003 PM2.5 OPC Laquai[46] black box Y 15 

PMS7003 PM2.5 OPC Badura[5] black box Y 20 

PPD42NS PM2.5, 
PM3, PM2 

nephelometer Wang[81], 
Holstius[36], 
Gao[32], Kelly[42], 
Austin[4] 

open source Y 15 

SDS011 PM2.5, 
PM10 

OPC Budde[11], 
Badura[5], Liu[51], 
Laquai[46] 

black box Y 30 

SM50 O3 MOs Feinberg[30] open source Y 500 

TGS-5042 CO MOs Spinelle[69] open source Y 40 

TZOA-PM 
Research 
Sensors 

PM nephelometer Feinberg[30] open source Y 90 

ZH03A PM2.5 OPC Badura[5] black box Y 20 

 

Table A3. Models of Sensor Systems by pollutant, type, openness and price. 

model pollutant type reference open/close living price 

2B Tech. 
(POM) 

O3 UV AQ-SPEC[3] black box Y 4500 

Aeroqual-
SM50 

O3 MOs Jiao[38] black box Y 2000 

AGT ATS-35 
NO2 

NO2 MOs Williams[87] black box N  

Air Quality 
Station 

PM1, 
PM2.5, 
PM10 

OPC AQ-SPEC[3] black box Y 2000 

AirAssure PM2.5 nephelometer Feinberg[30], 
Manikonda[52], 
AQ-SPEC[3] 

black box Y 1500 

AirBeam PM2.5 OPC, 
nephelometer 

Mukherjee[57], 
Feinberg[30], 
Borghi[9], Jiao[38], 
AQ-SPEC[3], 
LCSQA[47] 

black box Y 200 

AirCube NO2, O3, 
NO 

electrochemical Mueller[56], Bigi[8] black box Y 3538 

AirMatrix PM1, 
PM10, 
PM2.5 

nephelometer LCSQA[47] black box Y 60 

AirNut PM2.5 OPC AQ-SPEC[3] black box Y 150 

AIRQino PM2.5, 
PM10 

OPC Cavaliere[13] black box Y 1000 

AirSensEUR 
(v.1) 

CO, NO, 
NO2, O3 

electrochemical Wastine[82], 
Wastine[83], 

open source, 
black box 

Y 1600 
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LCSQA[47] 

AirSensEUR 
(v.2) 

CO, NO, 
NO2, O3 

electrochemical Karagulian[41] open source Y 1600 

AirSensorBox NO2, CO, 
O3, PM10 

electrochemical, 
MOs, 
nephelometer 

Borrego[10] black box Y 280 

AirThinx PM1, 
PM2.5, 
PM10 

OPC AQ-SPEC[3] black box Y 1000 

AirVeraCity CO, NO2, 
O3 

electrochemical, 
MOs 

Marjovi[53] black box Y 10000 

AirVisual Pro PM2.5, 
PM10 

OPC AQ-SPEC[3] black box Y 270 

AQMesh v.3.0 CO, NO electrochemical Jiao[38] black box N 10000 

AQMesh v.4.0 CO, NO2, 
NO, O3, 
PM1, 
PM10, 
PM2.5 

electrochemical, 
OPC 

AQ-SPEC[3], 
Cordero[20], 
Castell[12], 
Borrego[10], 
LCSQA[47] 

black box Y 10000 

AQT-410 
v.1.11 

O3 electrochemical AQ-SPEC[3] black box Y 3700 

AQT-420 NO2, O3, 
PM10, 
PM2.5 

electrochemical, 
OPC 

LCSQA[47] black box Y 5000 

AQY v0.5 PM2.5, 
NO2, O3 

OPC, 
electrochemical, 
MOs 

AQ-SPEC[3] black box updated 3000 

ARISense NO2, CO, 
NO, O3 

electrochemical Cross[22] black box Y  

Atmotrack PM1, 
PM10, 

PM2.5 

OPC LCSQA[47] black box Y 2500 

BAIRS PM2.5-0.5 OPC Northcross[58] open source N 475 

Cair PM2.5, 
PM10-2.5 

OPC AQ-SPEC[3] black box Y 200 

CairClip NO2-
F 

NO2 electrochemical Spinelle[66], 
Spinelle[68], 
Duvall[27], 
LCSQA[47] 

black box Y 600 

CairClip 
O3/NO2 

O3, NO2 electrochemical Jiao[38], 
Spinelle[66], 
Williams[87], 
Duvall[27], 
Feinberg[30] 

black box Y 600 

CairClip 
PM2.5 

PM2.5 OPC Williams[86] black box Y 1500 

CAM PM10, 
PM2.5, 
NO2, CO, 
NO 

OPC, 
electrochemical 

Borrego[10] black box Y  

CanarIT PM OPC Williams[86] black box N 1500 

Clarity Node PM2.5 OPC AQ-SPEC[3] black box Y 1300 

Dylos 
DC1100 

PM2.5-0.5 OPC Jiao[38], 
Williams[86], 
Feinberg[30] 

black box, 
open source 

Y 300 

Dylos 
DC1100 PRO 

PM2.5-0.5, 
PM10-2.5, 

OPC AQ-SPEC[3], 
Jiao[38], 
Feinberg[30], 

black box, 
open source 

Y 300 
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PM10 Manikonda[52] 

Dylos 
DC1700 

PM2.5-0.5, 
PM10, 
PM10-2.5, 
PM3, PM2, 
PM2.5 

OPC Manikonda[52], 
Sousan[64], 
Northcross[58], 
Holstius[36], 
Steinle[73], 
Han[35], 
Jovasevic[39], 
Dacunto[23] 

open source Y 475 

e-PM PM10, 
PM2.5 

OPC LCSQA[47] black box Y 2500 

E-Sampler PM2.5 OPC AQ-SPEC[3] black box Y 5500 

ECN_Box PM10, 
PM2.5, 
NO2, O3 

nephelometer, 
electrochemical 

Borrego[10] black box Y 274 

Eco PM PM1 OPC Williams[86] black box N  

ECOMSMART NO2, O3, 
PM1, 
PM10, 
PM2.5 

electrochemical, 
OPC 

LCSQA[47] black box Y 4650 

Egg (2018) PM1, 
PM2.5, 
PM10 

OPC AQ-SPEC[3] black box Y 249 

Egg v.1 CO, NO2, 
O3 

MOs AQ-SPEC[3] black box N 200 

Egg v.2 CO, NO2, 
O3 

electrochemical AQ-SPEC[3] black box Y 240 

Egg v.2 (PM) PM2.5, 
PM10 

nephelometer AQ-SPEC[3] black box Y 280 

ELM NO2, 
PM10, O3 

MOs, 
nephelometer 

AQ-SPEC[3], US-
EPA[78] 

black box N 5200 

EMMA PM2.5, CO, 
NO2, NO 

OPC, 
electrochemical 

Gillooly[34] black box Y  

ES-642 PM2.5 OPC LCSQA[47] black box Y 2600 

Foobot PM2.5 OPC AQ-SPEC[3] black box Y 200 

Hanvon N1 PM2.5 nephelometer AQ-SPEC[3] black box Y 200 

Intel 
Berkeley 
Badge 

NO2, O3 electrochemical, 
MOs 

Vaughn[79] open source N  

ISAG NO2, O3 MOs Borrego[10] black box N  

Laser Egg PM2.5, 
PM10 

nephelometer AQ-SPEC[3] black box Y 200 

M-POD CO, NO2 MOs Piedrahita[60] black box N  

MAS CO, NO2, 
O3, PM2.5 

electrochemical, 
UV, OPC 

Sun[74] black box, 
open source 

N, Y 5500 

Met One - 
831 

PM10 OPC Williams[86] black box Y 2050 

Met One 
(NM) 

PM2.5 OPC AQ-SPEC[3], 
LCSQA[47] 

black box Y 1900 

MicroPEM PM2.5 OPC AQ-SPEC[3], 
Williams[86] 

black box Y 2000 

NanoEnvi NO2, O3, 
CO 

electrochemical, 
MOs 

Borrego[10] black box Y  

PA-I PM1, 
PM2.5, 

OPC AQ-SPEC[3] black box N 150 
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PM10 

PA-I-Indoor PM2.5, 
PM10 

OPC AQ-SPEC[3] black box Y 180 

PA-II PM1, 
PM2.5, 
PM10 

OPC AQ-SPEC[3] black box Y 200 

Partector PM1, 
PM2.5 

Electrical AQ-SPEC[3] black box Y 7000 

PATS+ PM2.5 OPC Pillarisetti[61] black box Y 500 

Platypus NO2 NO2 MOs Williams[87] black box Y 50 

PMS-SYS-1 PM2.5 nephelometer Jiao[38], AQ-
SPEC[3], 
Williams[86], 
Feinberg[30] 

black box Y 1000 

Portable AS-
LUNG 

PM1, 
PM2.5, 
PM10 

OPC AQ-SPEC[3] black box Y 1000 

Pure Morning 
P3 

PM2.5 OPC AQ-SPEC[3] black box Y 170 

RAMP CO, NO2 electrochemical Zimmerman[92] open source Y  

S-500 O3, NO2 MOs AQ-SPEC[3], 
Lin[50], 
Vaughn[79] 

black box Y 500 

SENS-IT O3, CO, 
NO2 

MOs AQ-SPEC[3] black box N, Y 2200 

SidePak 
AM510 

PM2.5 nephelometer Karagulian[40] open source N 3000 

Smart Citizen 
Kit 

CO MOs AQ-SPEC[3] black box Y 200 

SNAQ NO2, CO, 
NO 

electrochemical Mead[54], 
Popoola[62] 

black box Y  

Spec CO, NO2, 
O3 

electrochemical AQ-SPEC[3] black box Y 500 

Speck PM2.5 nephelometer Feinberg[30], US-
EPA[78], 
Williams[86], 
Manikonda[52], 
Zikova[91], AQ-
SPEC[3] 

black box Y 150 

UBAS PM2.5 nephelometer Manikonda[52] black box N 100 

uHoo PM2.5, O3 nephelometer, 
MOs 

AQ-SPEC[3] black box Y 300 

Urban AirQ NO2 electrochemical Mijling[55] open source N  

Vaisala 
AQT410 
v.1.11 

CO, NO2 electrochemical AQ-SPEC[3] black box Y 3700 

Vaisala 
AQT410 
v.1.15 

CO, NO2 electrochemical AQ-SPEC[3] black box Y 3700 

Waspmote NO, NO2, 
PM1, 
PM10, 
PM2.5 

MOs, OPC LCSQA[47] open source Y 1270 

Watchtower 
1 

NO2, PM1, 
PM10, 
PM2.5, O3 

electrochemical, 
OPC 

LCSQA[47] black box Y 5000 
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Table A4. Shortlist of sensor systems showing good agreement with reference systems (𝑅2 > 

0.85; 0.8 < slope < 1.2) for daily data. 

model pollutant 
mean 
𝑹𝟐 

mean 
slope 

mean 
intercept open/close living commercial 

price 
(EUR) 

PA-I 𝑃𝑀1 0.99 0.91 0.47 black box N commercial 132 

PA-II 𝑃𝑀1 0.99 0.83 1.8 black box Y commercial 176 

Egg (2018) 𝑃𝑀1 0.88 0.81 0.33 black box Y commercial 219 

Egg v.2 
(PM) 

𝑃𝑀2.5 0.94 1 3.3 black box Y commercial 246 

AirThinx 𝑃𝑀1 0.89 0.85 1.3 black box Y commercial 880 

Portable 
AS-LUNG 

𝑃𝑀1 0.93 0.88 1.5 black box Y non 
commercial 

880 

AIRQino 𝑃𝑀2.5, 
𝑃𝑀10 

0.93 1 1.1 black box Y non 
commercial 

1000 

Air Quality 
Station 

𝑃𝑀1 0.94 0.89 1.1 black box Y non 
commercial 

1760 

AQY v0.5 𝑃𝑀2.5 0.91 0.94 4 black box updated commercial 2640 

Vaisala 
AQT410 
v.1.15 

𝐶𝑂 0.86 0.91 0.25 black box Y commercial 3256 
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Figure A1. Distribution of 𝑅2 for OEMs and sensor systems obtained from the calibration against 

the reference. Records were averaged over a time-scale of 1 hour. Dashed lines indicate the value 

of 0.7 and 1.0. Numbers in bold indicate the number of open source (blue) and black box (black) 
records. Names of ‘living’ and ‘non-living’ sensors are indicated in black and red colour, 

respectively. 



31 

 

Figure A2. Distribution of 𝑅2 for OEMs and ensor systems obtained from the calibration against the 

reference. Records were averaged over a time-scale of 1 minute. Dashed lines indicate the value of 
0.7 and 1.0. Numbers in bold indicate the number of open source (blue) and black box (black) 

records. Names of ‘living’ and ‘non-living’ sensors are indicated in black and red colour, 
respectively. 
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Figure A3. Distribution of 𝑅2 from the comparison of sensor systems against reference systems. 

Records were averaged over a time-scale of 1 minute. Numbers in bold indicate the number of 

open source (blue) and black box (black) records. Names of ‘living’ and ‘non-living’ sensors are 
indicated in black and red colour, respectively. 
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Figure A4. Distribution of 𝑅2 from the comparison of sensor systems against reference systems. 

Records were averaged over a time-scale of 1 hour. Numbers in bold indicate the number of open 

source (blue) and black box (black) records. Names of ‘living’ and ‘non-living’ sensors are indicated 
in black and red colour, respectively. 
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Figure A5. Distribution of 𝑅2 from the comparison of OEMs against reference systems. Records 

were averaged over a time-scale of 1 hour. Numbers in bold indicate the number of open source 
(blue) and black box (black) records. Names of ‘living’ and ‘non-living’ sensors are indicated in 

black and red colour, respectively. 
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Figure A6. Distribution of 𝑅2 from the comparison of OEMs against reference systems. Records 

were averaged over a time-scale of 24 hour. Numbers in bold indicate the number of open source 

(blue) and black box (black) records. Names of ‘living’ and ‘non-living’ sensors are indicated in 
black and red colour, respectively. 
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Figure A7. Distribution of 𝑅2 from the comparison of sensor systems against reference systems. 

Records were averaged over a time-scale of 24 hour. Numbers in bold indicate the number of open 
source (blue) and black box (black) records. Names of ‘living’ and ‘non-living’ sensors are indicated 

in black and red colour, respectively. 
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Figure A8. Distribution of slopes from the comparison of sensors systems against the reference. 
Only records with 𝑅2 > 0.7 and 0.5 < slope < 1.5 are shown. Records were averaged over a time-

scale of 1 hour. Numbers in bold indicate the number of open source (blue) and black box (black) 
records. Names of ‘living’ and ‘non-living’ sensors are indicated in black and red colour, 

respectively. 
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Figure A9. Distribution of slopes from the comparison of OEMs against the reference. Only records 
with 𝑅2 > 0.7 and 0.5 < slope < 1.5 are shown. Records were averaged over a time-scale of 1 

hour. Numbers in bold indicate the number of open source (blue) and black box (black) records. 
Names of ‘living’ and ‘non-living’ sensors are indicated in black and red colour, respectively. 
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Figure A10. Distribution of slopes from the comparison of sensors systems against the reference. 
Only records with 𝑅2 > 0.7 and 0.5 < slope < 1.5 are shown. Records were averaged over a time-

scale of 24 hour. Numbers in bold indicate the number of open source (blue) and black box (black) 
records. Names of ‘living’ and ‘non-living’ sensors are indicated in black and red colour, 

respectively. 
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Figure A11. Distribution of slopes from the comparison of OEMs against the reference. Only 
records with 𝑅2 > 0.7 and 0.5 < slope < 1.5 are shown. Records were averaged over a time-scale 

of 24 hour. Numbers in bold indicate the number of open source (blue) and black box (black) 
records. Names of ‘living’ and ‘non-living’ sensors are indicated in black and red colour, 

respectively. 
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Figure A12. Mean 𝑠𝑙𝑜𝑝𝑒 for obtained from the comparison of OEMs and sensor systems against 

reference measurements. 
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Figure A13. Prices of OEMs available on the market (Numbers in bold indicates the number of 
pollutants measured by each sensor. x-axis uses logarithmic scale). Numbers in bold indicate the 

number of open source (blue) and black box (black) records. Names of ‘living’ and ‘non-living’ 
sensors are indicated in black and red colour, respectively. 
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